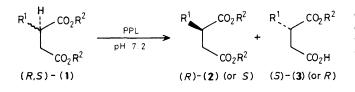
Enantioselective Hydrolysis of Racemic Diesters by Porcine Pancreatic Lipase

Eryka Guibé-Jampel,* Gérard Rousseau, and Jacques Salaün

Laboratoire des Carbocycles, U.A. 478, Bâtiment 420 Université de Paris-Sud, 91405 Orsay Cedex, France

Porcine pancreatic lipase catalysed hydrolysis of dimethyl succinates, aspartates, and glutamate provides (*R*) and (*S*) methyl esters enantioselectively.


Utilization of enzymes in organic synthesis to prepare chiral compounds of synthetic value is well documented.¹ It has been recently reported that the inexpensive commercially available porcine pancreatic lipase (PPL; E.C.3.1.1.3) catalyses specifically the hydrolysis of esters of racemic alcohols² and *meso*

diols.³ In contrast with α -chymotrypsin,⁴ liver esterase,¹ and microbial lipases,⁵ PPL hydrolyses α -substituted carboxylic esters with low chemical and optical yields.^{5,6}

We now report that PPL can catalyse the regioand enantio-selective hydrolysis of some racemic dimethyl Table 1. Chiral esters from PPL hydrolysis.

			Reaction	conditionsc			
	Substrate		Conc. of $(1)/$	Lipase ratio/d			
	\mathbf{R}^{1}	R ²	mol dm ⁻³	$g mmol^{-1}(1)$	$t_{1/2}/h$	Yields (2)/%	E.e./%e
(1a)	Me	Me	0.62	0.04	7.5	93	95
(1b)	Me	Et	0.53	0.06	14	78	75
(1c)	Me	Bu	0.55	0.07	32	96	21
(1d)	Benzyl	Me	0.33	0.15	13	90	98
(1e)	Allyl	Me	0.33	0.15	7	80	51
(1f)	n-Butyl	Me	0.33	0.15	17	85	40 ^f
(1g)	NHZ ^a	Me	0.33	0.15	4	90	100
(1h)	NHAc	Me	0.33	0.07	0.13	90	100
(4)	AcGlu(OMe) ₂ ^b		0.33	0.06	2	90	100

^a Z = benzyloxycarbonyl. ^b AcGlu(OMe)₂ = dimethyl *N*-acetyl glutamate. ^c All hydrolysis performed in $0.1 \text{ M KH}_2\text{PO}_4$ at room temp. (18–20 °C); 100–200 mmol [(1a–c)] or 10 mmol scales [(1d–h), (4)] at pH 7.2 (maintained by an automatic burette). The reaction was stopped when 0.50–0.55 equiv. of 2 M NaOH was consumed, and worked-up under standard conditions. ^d PPL was purchased from Sigma. ^e Determined by ¹H n.m.r. spectroscopy (250 MHz) in the presence of tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]-europium(III), Eu(hfc)₃ (20–30% mol/mol) on the purified product, or by comparison of the optical rotations of (2b), (2c) unequivocally prepared following the procedure in ref. 7. ^f The hydrolysis was also non-regioselective.

alkylsuccinic, N-protected aspartic, and glutamic esters.

We have obtained from (R,S)-dimethyl methylsuccinate (1a) the unhydrolysed ester (R)-(2a)⁸ (93%) with an enantioselectivity higher than 95%† ($[\alpha]_D$ +4.75, c 2.9, CHCl₃) and, after acidification of the aqueous phase, the half ester (S)-(3a)⁹ (76%). Esterification of (S)-(3a) by diazomethane gave the dimethyl methylsuccinate (S)-(2a).¹⁰ The optical purity [73% enantiomeric excess (e.e.)] was improved by a second PPL hydrolysis, which led to (S)-(3a) (>96% e.e.) ($[\alpha]_D = -10.04, c 2.5, CHCl_3; lit.⁹ [\alpha]_D - 9.3, c 17.5, CHCl_3)$. Treatment with diazomethane gave the diester (S)-(2a) with $\ge 96\%$ e.e. ($[\alpha]_D - 4.90, c 2.9, CHCl_3$). Hydrolysis of (1a) by α -chymotrypsin has been reported previously, providing (R)-(2a) (76% e.e.) and a regioisomeric half-ester, *i.e.*, the β -methyl α -methylsuccinate (70% e.e.).⁴

However, (R,S)-diethyl (1b) and dibutyl methylsuccinate (1c) underwent PPL hydrolysis more slowly than (1a), providing (R)-(2b) and -(2c) with 75 and 21% e.e. respectively (see Table 1). The rate and the enantioselectivity of the PPL hydrolysis was also influenced by the nature of the substituent R^1 of the diester (1). Thus, while dimethyl benzylsuccinate (1d) appeared to be an excellent substrate leading to (S)-(2d) (\geq 98% e.e., 90% yield) ($[\alpha]_D$ -27.3, c 4.5, CHCl₃)⁴ the dimethyl allyl- (1e) and butyl-succinate (1f) were hydrolysed with low selectivity.

Only L-amino acid derivatives were hydrolysed, but in the α -position. A bulky *N*-protecting group reduced the hydrolysis rate [compare *N*-benzyloxycarbonyl (1g) and *N*-acetyl-aspartate (1h)] but did not affect its enantioselectivity. An identical result was observed with a γ -diester: *i.e.*, the

dimethyl *N*-acetylglutamate (4). However unprotected dimethyl aspartate and glutamate underwent the hydrolysis without selectivity and β -methyl aspartate was not a substrate for PPL.

In conclusion, we have carried out for the first time PPL enantioselective carboxylate hydrolysis at a β chiral centre, and the resolution of α -amino esters by means of a cheap and convenient reagent.[‡] Synthetic applications of these useful chiral blocks and the results of PPL transesterification will be published elsewhere.

Received, 23rd December 1986; Com. 1820

References

- 1 (a) G. M. Whitesides and C.-H. Wong, *Angew. Chem., Int. Ed. Engl.*, 1985, **24**, 617; (b) J. B. Jones, *Tetrahedron*, 1986, **42**, 3351 and references cited therein.
- 2 W. E. Ladner and G. M. Whitesides, J. Am. Chem. Soc., 1984, 106, 7250.
- 3 Y.-F. Wang, C.-S. Chen., G. Girdaukas, and C. J. Sih, J. Am. Chem. Soc., 1984, 106, 3695; W. Kasel, P. G. Hultin, and J. B. Jones, J. Chem. Soc., Chem. Commun., 1985, 1563.
- 4 S. G. Cohen and A. Milovanović, J. Am. Chem. Soc., 1968, 90, 3495.
- 5 T. Kitazume, T. Sato, T. Kobayashi, and J. Tain Lin, J. Org. Chem., 1986, 51, 1003.
- 6 E. De Jeso, S. Drouillard, C. Lafarge, and B. Maillard, *Tetrahedron Lett.*, 1985, 26, 6003.
- 7 E. J. Eisenbraun and S. M. McElvain, J. Am. Chem. Soc., 1955, 77, 3383.
- 8 R. Rossi, P. Diversi, and G. Ingrosso, *Gazz. Chim. Ital.*, 1968, **98**, 1391.
- 9 G. Ställberg, Acta Chem. Scand., 1956, 10, 1360; Ark. Khem., 1958, 12, 79.
- 10 E. Krezdorn, S. Höcherl, and H. Simon, Z. Physiol. Chem., 1977, 358, 945.

‡ PPL is respectively 10⁶ and 10⁴ times less expensive than pig liver esterase (PLE) and α -chymotrypsin for a standard enzymatic activity (see ref. 1a).

[†] See footnote e in Table 1.